CG:YRF, Chapel Hill, NC, USA, June 16-20, 2012

Visualizing and representing the evolution of topological features

Rasmus Fonseca™*

Abstract

Simplicial complexes are discrete representations of
topological spaces that are practical for computational
studies. The first three Betti-numbers (indicating the
number of components, tunnels and voids), as well as
the topological persistence of each such feature, is well-
defined and can be efficiently computed for simplicial
complexes embedded in 2D and 3D [1, 2].

We introduce a novel representation of the evolution
of topological features in simplicial complexes using so-
called tunnel-trees in 2D and void-trees in 3D. This new
representation makes it possible to analyze topological
evolution by applying tools for analysis of binary trees.
Furthermore it supplies a new method for visualizing
topological evolution.

Introduction

A simplicial complex, /C, is a set of simplices where any
face of a simplex in K is also in K and the intersec-
tion of two simplices in K is either empty or a face of
both simplices. Delfinado and Edelsbrunner [1] define
a filter to be a sequence of simplices, o', 02,..., 0",
where K; = {01,02,...,0'} is a simplicial complex for
any choice of i (see left part of Figure 1). The filter
represents the evolution of a simplicial complex and
will be the focus of the methods described here. The
topological features of a complex can be described us-
ing the Betti-numbers, §;, which indicate the rank of
the dth homology group. The first three Betti-numbers
(Bo, B1,P=2) can be interpreted more intuitively as the
number of components, holes, and voids respectively.
A O(na(n))-time algorithm exists to calculate the evo-
lution of B, as a simplicial complex is grown using a
filter [1]. This method identifies each k-simplex, o*, as
either positive if it creates a new k-cycle and thereby
increases (O, or negative if it changes a k-cycle into a k-
boundary and thereby decreases B;_1. For each positive
k-simplex, o¢, the negative (k + 1)-simplex, o7, that is
responsible for turning the k-cycle, created by o?, into a
k-boundary can be efficiently identified [2]. The differ-
ence between the indices of such two simplices is defined
to be the persistence of the k-cycle represented by .

*Department of Computer Science, University of Copenhagen,
rfonseca@diku.dk

TDepartment of Computer Science, University of Copenhagen,
daisy@diku.dk

Desirée Malene Schreyer Jorgensen?

Tunnel- and void-trees

One interesting observation about tunnels in simplicial
complexes embedded in 2D is that, often, when a posi-
tive 1-simplex (edge) is added to the complex, it splits
one tunnel in two. If the empty space around the com-
plex is considered a bounding tunnel, then every positive
edge will split an existing tunnel in two. Similarly, if
the entire space around a simplicial complex embedded
in 3D is considered a bounding void, then a positive 2-
simplex (triangle) always splits an existing void in two.

Based on this observation we define a tunnel-tree (or
Bi-tree) of a 2D filter to be a binary tree where each
node represents a distinct tunnel (see right part of Fig-
ure 1). The root is the bounding tunnel, and the leaves
are triangular tunnels that will not be split further.
With each node n we associate the positive edge that
represents the tunnel, e(n), and with each leaf, we as-
sociate the negative triangle that fills this tunnel, 7(n).
The tunnel-tree is ordered such that for any node n,
the triangle of the rightmost leaf, 7(TREE-MAX(n)), is
the triangle that ’destroys’ e(n) and hence determines
its persistence. A wvoid-tree (or fa-tree) of a 3D filter is
defined in a similar fashion, only with positive triangles
as nodes and negative tetrahedra as leaves.

A Bi-tree is constructed by running through the filter
backwards as shown in Algorithm 1. Leaves are created
when a negative (k + 1)-simplex is encountered and the
roots of leaves are connected when positive k-simplices
are encountered.

Algorithm 1 Build a §j-tree given a filter
1: Create a ’bounding node’, ny
2: fori=nto1ldo
3. if o' is a negative (k + 1)-simplex then

4: Create a new node, n, and set 7(n) < o'

5: else if ¢¢ is a positive k-simplex then

6: (ng,n1) + Nodes of the two (k 4 1)-simplices
adjacent to o

7: (ng,n1) < (RooT(ng), ROOT(N1))

8: Swap mng and n; if 7(TREE-MaAX(ng)) is
younger than 7(TREE-MAX(nq))

9: Create a new node n with n.left < ny,
n.right < ny, and e(n.left) < o°

10: end if

11: end for

12: return ROOT(ny)

This is an abstract of a presentation given at CG:YRF 2012. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

1%t Computational Geometry Young Researchers Forum, 2012

06

15

4\
4

I
Jo

015 056 245

-+ o+ o+ o+ + + o+ + o+ o+

0/ | » 01 12 23 34 45 56 245 015 056

- - - - - - + - - -+ - -
o'|0o 1 2 3 4 5 6 01 12 23 34 45 56 06 15 05 056 24 25 234 125 015 46 456 245
234 125 456

125 234

Figure 1: Left: A 2D filter. For all positive k-simplices, o¢, the (k + 1)-simplex, o7, responsible for turning the
k-cycle, represented by o’ into a k-boundary is indicated as well. Right: The tunnel-tree (3;-tree) of the filter.
Both €(n) and 7(n) are shown for each node if they are defined.

In line 4, the (k + 1)-simplex can be associated with
its node using a hash-map. This ensures that locating
the nodes of adjacent (k 4 1)-simplices in line 6 can
be performed in constant time. In line 6, if one of the
(k 4 1)-simplices adjacent to o is not defined then the
bounding node ny, is used instead. If ¢* has no adjacent
(k4 1)-simplices then a new node is created for ng, and
ni is set to mp. Line 8 guarantees that the youngest
simplex in a subtree can always be found by going to
the far right in the tree using TREE-MAX.

A [Bi-tree may be arbitrarily unbalanced, so a
straightforward implementation will run in O(n?) time
worst case. The TREE-MAX-method can be improved
to O(1) time by maintaining the maximum of each sub-
tree as they are constructed. A data structure similar to
disjoint-sets can be used to make the ROOT method run
in O(a(n))-time, so the entire method runs in O(na(n))
worst case time.

Applications

One attractive property of Sj-trees is that they give an
alternative representation of the topological evolution
of a filter. This can be used in several ways.

First, the fact that simplices in the subtree of a par-
ticular node will tend to be spatially close to each other
gives rise to a new definition of local persistence. A par-
ticular edge, representing a tunnel, might be deemed
particularly persistent if its subtree contains more than
a certain number of nodes. Such a definition of persis-
tence will not be affected by the addition of simplices
outside the tunnel.

Using a Delaunay complex and the radius of the
smallest empty circumcircle to generate an a-filter [3],
the arrangement of a particular sub-tree also gives an

indication of the shape of the corresponding feature. For
instance, a node with an unbalanced sub-tree indicates
a tunnel that is narrowing, whereas a balanced node
indicates a constant width.

For some applications, a tree might be a better vi-
sualization of the topological evolution than e.g. k-
triangles [2]. The above mentioned properties of locality
can be computationally analyzed, but they can also be
derived simply by inspecting Si-trees. The length of
edges in the tree can furthermore be scaled to reflect
the difference in birth time of the ¢(n) simplices.

Another interesting property of [g-trees is that all
(k+1)-simplices within a particular tunnel /void are eas-
ily identified by locating the node in the tree with the
desired €(n) and then collecting all leaves in the subtree
using any tree-traversal method. In this manner the
area of tunnels/volume of voids, for instance, is easily
calculated.

Finally, any analysis method that works on trees is
now applicable to topological evolutions. For instance
the topology of two point-sets can be compared by find-
ing the tree-edit-distance between the tunnel-trees (or
void-trees) of their respective a-filters.

References

[1] C. Delfinado and H. Edelsbrunner. An incremental algo-
rithm for Betti numbers of simplicial complexes on the
3-sphere. Computer Aided Geometric Design, 12(7):771—
784, 1995.

[2] H. Edelsbrunner, D. Letscher, and A. Zomorodian.
Topological persistence and simplification. Discrete and
Computational Geometry, 28(4):511-533, 2002.

[3] H. Edelsbrunner and E. Miicke. Three-dimensional alpha
shapes. In Proceedings of the 1992 Workshop on Volume
Visualization, pages 75-82. ACM, 1992.

